OBJECTIVE MATHEMATICS Volume 2 Descriptive Test Series

CHAPTER-4 : APPLICATION OF DERIVATIVES

UNIT TEST-1

1. Let a curve $y=f(x), x \in(0, \infty)$ pass through the points $P\left(1, \frac{3}{2}\right)$ and $Q\left(a, \frac{1}{2}\right)$. If the tangent at any point $R(b, f(b))$ to the given curve cuts the y-axis at the point $S(0, c)$ such that $b c=3$, then $(P Q)^{2}$ is equal to \qquad .
2. Let M and N be the number of points on the curve $y^{5}-9 x y+2 x=0$, where the tangents to the curve are parallel to x-axis and y-axis, respectively. Then the value of $M+N$ equals \qquad .
3. If the tangent to the curve $y=x^{3}-x^{2}+x$ at the point (a, b) is also tangent to the curve $y=5 x^{2}+2 x-25$ at the point ($2,-1$), then $|2 a+9 b|$ is equal to \qquad .

Hints and Solutions

1. (5)
$Y-y=m(X-x), m=\frac{d y}{d x}$
Put

$$
X=0
$$

$$
Y=y-m x \Rightarrow x(y-m x)=3
$$

or

$$
y-\frac{y d x}{d x}=\frac{3}{x}
$$

or $\quad \frac{y d x-X d y}{X^{2}}=\frac{3 d x}{x} \cdot \frac{1}{x^{2}}$
or

$$
d\left(\frac{-y}{x}\right)=3 d\left(\frac{x^{-2}}{-2}\right)
$$

$$
\Rightarrow \frac{y}{x}=\frac{3}{2 x^{2}}+C
$$

$C=0$

$$
\begin{aligned}
& \frac{1}{2 \alpha}=\frac{3}{2 \alpha^{2}} \\
& \text { or }=3 \\
& P\left(1, \frac{3}{2}\right) Q\left(3, \frac{1}{2}\right)^{2}
\end{aligned}
$$

2. (2)

Here equation of curve is
$y^{5}-9 x y+2 x=0$
On differentiating: $5 y^{4} \frac{d y}{d x}-9 y-9 x \frac{d y}{d x}+2=0$
$\therefore \frac{d y}{d x}-=\frac{9 y-2}{5 y^{4}-9 x}$
When tangents are parallel to x-axis then $9 y-2=0$
$\therefore M=1$.
For tangent perpendicular to x-axis

$$
\begin{equation*}
5 y^{4}-9 x=0 \tag{ii}
\end{equation*}
$$

From equation (i) and equation (ii) we get only one point.

$$
\begin{aligned}
\therefore & N & =1 . \\
\therefore & M+N & =2 .
\end{aligned}
$$

3. (195)

Slope of tangent to curve $y=5 x^{2}+2 x-25$

$$
=m=\left(\frac{d y}{d x}\right)_{\mathrm{at}(2,-1)}=22
$$

\therefore Equation of tangent : $y+1=22(x-2)$

$$
\therefore \quad y=22 x-45 .
$$

Slope of tangent to $y=x^{3}-x^{2}+x$ at point (a, b)

$$
=3 a^{2}-2 a+1
$$

2 | Objective Mathematics Volume-2

$$
\begin{aligned}
& 3 a^{2}-2 a+1=22 \\
& 3 a 2-2 a-21=0 \\
& \therefore a=3 \text { or }-\frac{7}{3} \\
& \text { Also } b=a^{3}-a^{2}+a
\end{aligned}
$$

Then $(a, b)=(3,21)$ or $\left(-\frac{7}{3},-\frac{151}{9}\right)$
$\left(-\frac{7}{3},-\frac{151}{9}\right)$ does not satisfy the equation of tangent

$$
\therefore a=3, b=21 \quad \therefore \quad|2 a+9 b|=195
$$

